NDIA Conference on Physics-Based Modeling for US Defense
Nov. 6-8, 2012, Denver, CO
DoD Computational Research and Engineering Acquisition Tools and Environments (CREATE) Program is Focused on the DoD Technical Community

- Goals and Perspective
- Technical Progress
- Programmatic Progress
- Path Forward
DoD High Performance Computing Modernization Program (HPCMP) Provides an HPC Problem-Solving Service Ecosystem for the DoD

Sponsors

SME Customers

S&T

T&E

Acquisition Engineering Community

Codes

V&V

Networks

Computers

DoD

CREATE

- CREATE

DoD Labs

Institutes

PETTT

DoD T&E

Defense Research Engineering Network

HPCMP Computers

Portals

Code Development Services

Archival File Storage
Computational Research Engineering Acquisition Tools and Environments (CREATE) Objectives and Goals

- Develop and deploy multi-physics-based computational engineering software that, when used in conjunction with increasingly capable high performance computing systems, accurately predicts the performance of weapons systems
 - To enable trade space optimization of new and retrofit designs
 - To avoid costly (time and money) design flaws and rework

- CREATE ultimate goal: Catalyze a revolution in weapons system design and development methodology
 - From reliance on building and testing physical prototypes
 - To virtual prototype design and evaluation
 - Followed by physical prototype validation
 - For the research, engineering, and acquisition communities
Present Product Development Process-based on Trial-and-Error

Iterated Design \rightarrow Build \rightarrow Test Cycles

- **Long time to market**
 - Requires many lengthy and expensive design/build/test iteration loops

- **Process converges slowly**
 - Process is rigid, not responsive to new requirements
 - Design flaws discovered late in process leading to rework
 - Systems Integration happens late in process
New Concept for DoD: Use Multi-Physics-Based Computational Tools to Improve Product Development of Complex Systems

- **Reduced design and development time**
 - Highly-scalable computational performance analysis of virtual prototypes reduces the need to test real prototypes

- **Process converges much faster**
 - Process is flexible, very responsive to new requirements
 - Identify and correct design flaws early in process reducing rework
 - Systems Integration happens at every step of the process
Performance Analysis of Virtual Prototypes is the Key

- Replace “rule-of-thumb” extrapolations of existing designs with physics-based designs
- Inject physics into design early and all through the process!
CREATE Program Focuses on Four Project Areas

- **Air Vehicles (AV) — Air Force, Army & Navy**
 - Aerodynamics, structural mechanics, propulsion, control, …

- **Ships — Navy**
 - Shock vulnerability, hydrodynamics, concept design

 - RF Antenna electromagnetics and integration with platforms

- **Mesh and Geometry (MG) Generation**
 - Rapid generation of mesh and geometry representations needed by

CREATE tools will support all stages of acquisition from rapid early-stage design to full life-cycle sustainment

Aircraft and aircraft carrier meshes
Military platforms with antennas
CREATE –

Four Projects → Ten Software Applications

- Air Vehicles—CREATE AV
 - DaVinci - Rapid conceptual design
 - Kestrel - High-fidelity, full-vehicle, multi-physics analysis tool for fixed-wing aircraft
 - Helios - High-fidelity, full-vehicle, multi-physics analysis tool for rotary-wing aircraft
 - Firebolt - Module for propulsion systems in fixed- and rotary-wing air vehicles

- Ships—CREATE Ships
 - Rapid Design & Integration (RDI) - Rapid Design and Synthesis Capability
 - Navy Enhanced Sierra Mechanics (NESM) - Ship Shock & Shock Damage Assessment
 - NAVYFOAM - Ship Hydrodynamics-predict hydrodynamic performance
 - Integrated Hydro Design Environment (IHDE) - Facilitates access to Naval design tools

- RF Antenna—CREATE RF
 - SENTRI - Electromagnetics antenna design integrated with platforms

- Meshing and Geometry—CREATE MG
 - Capstone - Components for generating geometries and meshes needed for analysis
Annual Product Release Cadence Established

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY2010</th>
<th>FY2011</th>
<th>FY2012</th>
<th>FY2013-planned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>AV-DaVinci</td>
<td></td>
<td></td>
<td>1</td>
<td>1 2 3</td>
</tr>
<tr>
<td>AV-Helios</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3 4</td>
</tr>
<tr>
<td>AV-Kestrel</td>
<td></td>
<td>1 2</td>
<td>2</td>
<td>3 4</td>
</tr>
<tr>
<td>MG-Capstone</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2 3 4</td>
</tr>
<tr>
<td>RF-SENTRI</td>
<td>1 1.5</td>
<td>2</td>
<td>2</td>
<td>3 3</td>
</tr>
<tr>
<td>Ships-IHDE</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4 4</td>
</tr>
<tr>
<td>Ships-NavyFoam</td>
<td>1 1 2</td>
<td>2 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ships-NESM</td>
<td>0.1</td>
<td>1</td>
<td>1.1</td>
<td>2.1 1.1</td>
</tr>
<tr>
<td>Ships-RSDE</td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Approximately every year, a fully-tested upgraded code with the new features identified in the roadmap is released.
DaVinci: Conceptual Air Vehicle Design

- **Delivered capabilities in Version 2.0**
 - Enable creation of parametric, associative engineering models of fixed- and rotary-wing aircraft from pre-engineered components (e.g., airfoils, 3-D wing surface, rotor, fuselage, engines) resulting in mesh-able, NURBS-based surface geometry
 - An agile infrastructure that allows building of conceptual design capabilities and tools:
 - Rapid model development and seamless transition from conceptual design to preliminary-/detailed-level analysis (e.g., Kestrel/ Firebolt and Helios/ Firebolt products)
 - Being used for assessments of next-generation AF Cargo Plane

Kestrel use by DaVinci

1. Create water tight OML geometry in *DaVinci*
2. Pass OML geometry to *Capstone* for grid generation
3. Pass grid to *Kestrel* for static & dynamic analyses
 - Static rigid aircraft
 - Rigid single body prescribed motion
4. Pass *Kestrel* analyses in coefficient, force, moment form to *DaVinci*
5. Integrate *Kestrel* results for use in *DaVinci*
Kestrel

- Delivered capabilities—2012
 - Simulations with two or more bodies in relative motion with control surfaces
 - User-prescribed time histories of position and orientation data
 - 6DoF predictive motion
 - Systems Identification Models
 - Airframe Propulsion Integration
 - Meeting accuracy (~5%) and scalability goals (90% parallel efficiency for ~1,000 core problems)

Airframe Propulsion Integration

- Requires hi-fi aero coupled with propulsion cycle analysis or full annulus modeling
- *Kestrel* is the only production quality S/W capable of coupling engine with aircraft (a/c) for throttle changes
- Warfighter Payoff — Safety of flight checkouts, less conservative flight envelopes, NO ground test facility in the world can model this
Helios v3.0 2013 Capability

- General multi-rotor and fuselage modeling
- Co-visualization ParaView module
- AMR with generalized vorticity threshold
- Parallel unstructured mesh partitioning
- DES turbulence modeling

Army / Boeing CH-47 Modeling

- Boeing claims that its new CH-47F rotor blade will have 2,000 lbs. of increased thrust in hover with no degradation in forward flight performance
 - New dihedral-anhedral blade tip shape similar to Comanche rotor
 - Wind-tunnel tests completed in 2010
 - Flight tests scheduled for 2014 with plans to retrofit new blades into CH-47F models
- Army AFDD and AED are working with Boeing to run Helios simulations for new CH-47F rotor and fuselage combinations
- CREATE-A/V Helios simulations will reduce risk in the deployment of this new CH-47F rotor blade by:
 - Confirming Boeing’s performance predictions for the isolated rotor prior to flight tests
 - Confirming that the rotor/rotor interference and/or rotor/fuselage aerodynamic interactions don’t adversely affect the performance of the installed rotors … Boeing cannot predict these interactional aerodynamics effects without using Helios
Rapid Design Integration (RDI)

- **RSDE 1.0 (Dec 2012)**
 - Capability to perform design space exploration using the Advanced Ship and Submarine Evaluation Tool (ASSET ver 6.3)
 - Release of LEAPS 4.4 with Multi-disciplinary Design Optimization Toolkit and ship structure definition in LEAPS focus model

- **Being used for Engineered Resilient Systems Pilot Design Optimization**

- **Comparing traditional point-based and better set-based design methodology**

RSDE Design Optimization – Point based vs. set-based design (less weight and higher speed)

Point-Based Design Result

- Length = 160.0 meters
- Beam = 23.8 meters
- Displ. = 13,367 M tons
- Speed = 26.8 knots

Set-Based Design Result

- Length = 170.0 meters
- Beam = 21.5 meters
- Displ. = 12,769 M tons
- Speed = 27.8 knots
Navy Enhanced Sierra Mechanics (NESM)

- **NESM Capability 2012**
 - Production capabilities for UC I: Underwater explosions with minor hull damage
 - Extensive verification & validation for test platforms/ship components
 - Full ship validation initiated with good preliminary results at release
 - Beta Capabilities for UC II/III
 - Required elements and material models supported
 - Preliminary multi-scale modeling supported
 - All features fully-verified and preliminary validation promising

- **NESM Selected as the main candidate for CVN-78 Full Ship Shock Trail Alternative**
- **Undergoing validation and accreditation**
Integrated Hydrodynamics Design Environment (IHDE)

Current State (Available Capability IHDE V4.0)

- UCR1: Bare hull resistance using thin ship theory
 - Total Ship Drag (TSD) applicable to monohulls and multihulls
- UCR2: Bare hull resistance using a Boundary Element Method (BEM)
 - Das Boot: Current capability for monohulls
- UCS1: Frequency domain seakeeping analysis
 - Standard Ship Motions Program (SMP) applicable to monohulls
- UCS2: Time domain inviscid seakeeping prediction
 - Large-Amplitude Motions Program (LAMP): currently applicable to monohulls
- UCS5: Seaway Loads
 - Obtainable via LAMP for monohulls
- UCS6: Environmental conditions
 - Seakeeping Evaluation Program (SEP): provides operability with SMP input

- **Being used by US Navy Naval Architects to improve their productivity for hydro assessments of ship designs**
- **Allows Naval Architects to complete design studies in weeks instead of months**
- **Being used by MIT naval architecture students in their classes**
NavyFOAM

- **Current State (Available Capability NavyFOAM V3.0)**
 - UCR1: Hull resistance with fixed-sinkage and trim
 - UCR2: Hull resistance with computed-sinkage and trim
 - UCP1: Body force model for the propulsor
 - UCM1: Maneuvering capability for rotating arm (e.g., steady turns)
 - UCM2: Maneuvering capability for Planar Motion Mechanism (PMM)
 - UCM3: Maneuvering capability for moving appendages

- **Being used for hydrodynamic design of the Ohio Replacement, the Navy’s new Ballistic Missile Launch Submarine**

Ohio Replacement Submarine
SENTRI (RF Antenna Design)

- **SENTRI 3.0 Capabilities**
 - General Release scheduled for 30 Nov 2012
 - Faster solvers
 - Phase 1 of distributed memory version
 - Prescribed functional material characterization
 - Directed acyclic graph solver for parallel scalability

- **Code being tested and validated**

- **Example problem**
 - 8x8 dual polarized phased-array antenna
 - Antennas: strip-line Vivaldi notch-printed circuit
Capstone (Meshing and Geometry)

- Automated near-body volume meshing with boundary-layers
- Unstructured surface meshing improvement
 - Anisotropic (general and boundary-layer-like) meshes on surfaces
 - Exact representation of key model features like trailing-edges, tips, etc.
- Boundary-layer volume meshing for bodies with external attachments
- Composite topology support
 - Ability to merge several faces and edges when meshing
- Expanded and easier to use SDK
 - Expose both basic APIs as well as more complex functions
- Volume mesh visualization
 - Slices, crinkle-cut rendering of volume meshes

Capstone Impact: **Design it better, faster and cheaper!**
AF LCMC Pilot Project

Capstone is enabling hi-fidelity physics-based analysis earlier in the design process
- Huge impact in avoiding cost later
- Recipe-based (kernel/CAD agnostic)

Before Capstone:
- Manual
- Took 1 year
- Could produce invalid meshes

With Capstone:
- Automated
- Month or less
- Valid

Critical for enabling Computational Full Ship Shock Tests

Huge improvement in turnaround time!

From AIAA paper by Greg Brooks (AV-Shadow Ops)
Acquisition Engineering Customer Base Growing

- CREATE AV licenses up to ~275 (not all active)

Notes:
- Developers omitted from above
- 196 users not registered online and omitted
- Service usage based on sponsor email

User base growth is a **good** thing, but represents a growing demand on flat development team resources
- CREATE setting up an AV Support organization to be owned and supported by the Services (Army, Navy, and Air Force Aviation communities)
CREATE Tools Being Tested & Used by ~ 50 Programs

- NAVSEA: DDG-1000 Surface Combatant, the CVN 78 and 79 Aircraft Carriers, and the Ohio Replacement Submarine program;

- NAVAIR: E-2D, F/A-18E, JSF, F/A-18 MALD, Fire Scout, and Small UAV PMA

- Army Rotorcraft: UH-60, CH-47 (ACRB), OH-58

- AF LCMC: F-15 SA/DB-110, B-1B/ELLA, Strategic Airlift CP&A, JSF
CREATE Making Deployment Progress

- DoD needs to maintain government use rights and control of distribution
 - Export control designation vetted by DTSA
 - Enables FOIA exemption as military Tech Data

- Successfully deployed applications to government engineers

- Successfully deployed applications to US Defense Industry under contract to the DoD

- Exploring CRADAs for deployment to US Defense Industry not under contract to the DoD

- CREATE tools being used by AF Academy aeronautical engineering students and MIT naval architecture students
Kestrel Delivery Using HPC-Portal

- DoD security restrictions will limit users to MS Office and Browser

- HPCMP developing a Portal to allow users to access codes on HPC platforms through a browser

Field-view Integrated into workflow

Smart Parameter Entry

Convergence Plot (User-Selected Parameters)
CREATE Next Steps

• Improve scaling
 – Next-generation computer architecture will rely on massive parallelism and mixtures of special purpose processors
 – Re-architecting and refactoring basic solvers
 – CREATE exploring use of new computational mathematics libraries and algorithms

• Increasing emphasis on V&V and Uncertainty Quantification (UQ)
 – Following guidelines listed in recent NAS study on VV&UQ
 – Already following most “best practices,” but greater emphasis on obtaining validation data would be highly useful
 – Assessing UQ and methods and options
Summary

- CREATE Program is continuing to develop and deploy software with the new features needed by the DoD aircraft, Naval, and RF engineering community.

- Customer growth is strong, both in terms of users and programs.

- Already contributing to the analysis and design of important DoD systems (CH-47 rotor-blade retrofit, Ohio replacement submarine, CVN-78 shock test, NAVAIR UAV flight certification, and AF next-generation cargo plane).

- Progress in user support, IP and deployment issues, and Software Engineering.
Fourteen CREATE Papers in Parallel Sessions

- 15039 - Verification, Validation and Uncertainty Quantification in CREATE—A Case Study; Dr. Larry Votta,
- 14961 - 2012 Highlights of the CREATE Program; Dr. Douglass Post
- 15102 - CREATE-AV DaVinci: Informed Systems Engineering Decision-Making for DoD Acquisition; Mr. Gregory Roth
- 15048 - Prediction of Ship Shock Response & Damage with the Navy Enhanced Sierra Mechanics Code; Dr. E. Thomas Moyer
- 15082 - Modeling Antennas with CREATE-RF’s SENTRi Application Dr. John D’Angelo
- 14965 - Using CREATE’s Rapid Ship Design Environment to Perform Design Space Exploration for a Ship Design; Mr. Adrian Mackenna
- 15010 - First-Principles Hover Prediction for Multiple Rotor Blades using CREATE-AV Helios; Dr. Nathan Hariharan
- 15088 - Capstone: A Platform for Geometry, Meshing and Attribution Modeling for Physics-Based Analysis and Design; Dr. Saikat Dey
- 14769 - Portal Development for HPC at Maui High Performance Computing Center DoD Supercomputing Resource Center; Mr. David Morton
- 15028 - Using Kestrel in the Cloud; Mr. Joshua Calahan
- 15012 - Prediction of Unsteady Flow in UCAV Weapon’s Bay Using CREATE-AV’s Kestrel; Mr. Benjamin Hallissy
- 15040 - Software Engineering in CREATE—Lessons Deployed; Dr. Richard Kendall
- IHDE; Adrian Mackenna; late addition to the agenda
- NavyFoam; Sung-eon Kim; late addition to the agenda