
The NCP address crunch 
Posted on 1 April 2011 by meta 

http://meta.ath0.com/2011/04/01/the-ncp-address-crunch/ 

[Note: This text was posted through a time warp from 1979. Special thanks to Dan Bernstein and 

Avery Pennarun for their technical expertise.] 

Computers on the ARPAnet talk to each other using NCP, the Network Control Protocol. Each 

computer on the ARPAnet has its own public NCP address, similar to a street number; for 

example, 207. The target of each packet of data is identified by a public NCP address. 

Problem: There are only 256 NCP addresses. Many of those addresses have already been 

allocated. What happens when we run out of public NCP addresses? 

Partial solution: Do all these computers really need to be on the ARPAnet? A company with 20 

computers browsing FTP sites doesn’t need to put all those computers on the ARPANET. It can 

have a single computer on the ARPAnet (a “proxy”) that retrieves data from FTP servers on 

behalf of the other 19 computers, forwards telephone-over-NCP calls from those computers, etc. 

Most people agree, however, that proxies merely delay the inevitable. 

Long term solution: IPv4, the new Internet protocol, has many more addresses. 

Basic interoperability issues 

Suppose someone sells you a public IPv4 address. You put your computer on that address. You 

find that you can’t reach your company’s FTP servers. How will you react? 

This is an example of what’s called an interoperability failure. Right now, many–in fact, 

most–network services can’t talk to clients on public IPv4 addresses. Until this changes, using a 

public IPv4 address instead of an NCP address will be a disaster for servers. 

The IPv4 designers made a fundamental conceptual mistake: they designed the IPv4 address 

space as an alternative to the NCP address space, rather than an extension to the NCP address 

space. 

http://meta.ath0.com/2011/04/01/the-ncp-address-crunch/�
http://meta.ath0.com/author/admin/�
http://meta.ath0.com/2011/04/01/the-ncp-address-crunch/�
http://cr.yp.to/djbdns/ipv6mess.html�
http://apenwarr.ca/log/?m=201103#28�


This might sound like a very small mistake: after all, once IPv4 is working, we can move 

everything to IPv4, so who cares about NCP? The problem is that this mistake has gigantic 

effects on the cost of making IPv4 work in the first place. 

Each of the server admins must acquire his own public IPv4 address, announce that alongside 

his NCP address, and configure the server to respond to that address alongside its public NCP 

address, or else the client will fail. 

If I run an IPv4-only server, people with NCP can’t connect to it, and at least one valuable 

person is surely going to remain on NCP. So if I adopt IPv4, I adopt it in addition to NCP, not in 

exclusion. IPv4 will only start to be useful once I can turn off NCP, which will only be after all 

servers have IPv4 addresses. Any transition plan involves everyone having an IPv4 address, and 

until then we can’t start dropping NCP, and IPv4 won’t be useful. This is a classic chicken-and-

egg problem, and it’s unsolvable by brute force. * 

But really, there’s only one thing that makes IPv4 undesirable, but it’s a doozy: the addresses 

are just too annoyingly long. I can easily remember that DEC is 79, Xerox PARC is 32, and 

BBN is 72. With the new IPv4, I’m expected to memorize 15.216.110.22 to reach HP, 13.7.8.141 

to reach PARC, and 192.1.98.3 to reach BBN. Instead of three simple numbers, I now have to 

memorize four times as many, and make sure I get them in the right order. Madness. 

So IPv4 addresses are impossible to memorize. What’s more, auto-renumbering of hosts via 

DHCP means that anything I memorize today might be totally different tomorrow. IPv4 

addresses are like GUIDs. If they were a good idea, people would use them instead of URLs. Are 

URLs perfect? Does anyone love Network Solutions? No, of course not. But it’s 1000x better 

than looking at http://97.42.88.4/ and trying to guess if that’s *really* my bank’s web site or 

not. 

The counterargument, of course, is that DNS is supposed to solve this problem. Give each host a 

GUID IPv4 address, and then just map a name to that address, and you can have the best of both 

worlds. 

But DNS is a steaming pile of hopeless garbage. When I bring my laptop to my friend’s house 

and join his LAN, why can’t I see the other hosts on his LAN by name? Because DNS sucks. I’d 

rather they fixed that problem today before making me switch to something where I can’t 

possibly remember my host address. 

http://apenwarr.ca/log/?m=201103#28�


Basically, we need some sort of DNS protocol where new hosts on a network can exchange name 

information with zero configuration required. And a way for servers to multicast DNS 

information to allow some sort of service discovery. While they’re at it, they should find a way 

for IP addresses to be assigned automatically without needing a DHCP server to be set up. If 

they did all that, it might make IP usable. Perhaps eventually they might even make printers and 

other devices work with this magical zero configuration DNS. 

But while we wait for the impossible, there’s a solution to this whole IPv4 mess right now. We 

just need to skip the whole boondoggle. As already mentioned, not everyone in the world needs 

a public NCP address. In fact, most people don’t need one, because most people make only 

outgoing connections. Their internal network address can be mapped to the external address by 

their IMP router, via Network Address Translation (NAT). 

OK, you say, but don’t all servers need an NCP address? Not at all! HTTP/1.1, which is what 

everyone uses now, supports “virtual hosts”. You can connect to an NCP address on port 80, and 

you provide a Host: header at the beginning of the connection, telling it which server name 

you’re looking for. The NCP address can then decide to route that request anywhere it wants. 

So your request for www.google.com at address 79 could be routed by IMP to a different 

address, say 15, on BBN’s internal network. That server would look at the header and route via 

an internal connection to Google’s IMP, which might be address 32 on the internal BBN 

network. So no, we are not going to run out of NCP addresses, because the web is all anyone uses 

any more and HTTP is infinitely proxyable. 


	The NCP address crunch
	Basic interoperability issues


