IPv6 at Monash University

John Mann

Summary

• IPv6 research at CTIE, AT CRC
• Production IPv6 dual-stack network
• Problems
• Future Plans
Advanced Technologies CRC

Involved
• 14 staff from Monash and RMIT
• 50+ students
And resulted in
• 30+ Internet Drafts
• RFC 4135 and RFC 4429
• Optimistic DAD now in Linux kernel
• 125k lines of IPv6Suite simulation code
• 7 PhDs

Production Monash IPv6 dual-stack Network

• Why Now?
• Addressing Plan
• Configuring Routers and ACLs
• DNS and DHCP Services
• Servers
• Clients
Why Now?

- Monash is like a battleship, it will take a long time to change direction
- Need to break the chick-and-egg problem by providing the IPv6 infrastructure
- Need to raise IPv6’s profile, and show that it does actually work
- Need to find out what we don’t know
- Dual-stacking the infrastructure is a 50-device problem, v. dual-stacking edge devices which is a 30,000-device problem
- Cost of failure, or having to do things over, is low now, compared to having to do things in a rush later
- Be seen to be a leader

IPv4 address plan

- Originally used 130.194/16 for everything
- When that became full, added
 - 172.16/16 (private nets)
 - 172.17/16 (wireless)
 - 172.18/16 (students)
 - 172.19/16 (staff)
 - 172.20/16 (management)
 - ...
 - with Internet access via Proxies
- Renumbered half the network
IPv6 Address Plan

- No easy way to map IPv4 addresses <=> IPv6 addresses
- IPv4 address plan a bit disorganised anyway
- So, new logical IPv6 address plan

<table>
<thead>
<tr>
<th>Use {2 bits}</th>
<th>Org Unit {4 .. 12 bits}</th>
<th>Location {8 .. 0 bits}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>ITS</td>
<td>North</td>
</tr>
<tr>
<td>Research</td>
<td>Admin</td>
<td>East</td>
</tr>
<tr>
<td>Staff</td>
<td>Arts</td>
<td>West</td>
</tr>
<tr>
<td>Student</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- /64 for p-p router backbone links
- /64 for router loopbacks, DNS anycasts

IPv4 Address Plan 2

- In 2008, replaced Web and SOCKS proxies with Cisco Service Control Engine (SCE)
- All hosts that want Internet access needed to move to Public IPv4 addresses
- Obtained extra IPv4 addresses, and renumbered half the network again
- IPv4 network plan is now less messy – so less justification for a different IPv6 network plan
Router Configuration

- We enter all subnet information into a subnet database: subnet name, address ranges, vlan name/number, router names, access rights, ...
- The database is used to generate router configurations
- Extended the database to manage IPv6 addresses and generate IPv6 router configs

ACL Management

- Old scheme creates IPv4 ACLs using a Perl script and a flat-file list of exceptions
- ACL heuristics in script evolved over time
- Now need to generate IPv6 ACLs as well
- New ACL creation scheme uses templates and macro expansion for both IPv4 and IPv6 ACLs
- More-transparent scheme, but lower level
IPv6 out ACL Template Example

permit tcp any any established
%special-top-out6
permit ipv6 %fromgroup6 any ! normal out traffic
deny udp any any range 135 139 log ! block window virus
deny udp any any eq 445 log ! block window virus
permit udp %net-monash-au6 any ! NACP
deny udp any any eq 445 log ! block window virus
permit icmp any any ! NACP
permit ipv6 any ff00::/8 ! multicast out
%special-bottom-out6
deny ipv6 any any log-input

DNS

- Addhost, our network host registration scheme, was extended to cater for
 - Fixed IPv6 addresses; and also
 - "auto" IPv6 addresses generated from
 IPv4 address => IPv4 subnet => IPv6 subnet table,
 and Ethernet address => EUI-64 host address
- No need for normal users to enter long hex addresses
- Forward and reverse DNS
 - But not fe80::/64 reverse yet
- DNS servers have IPv6 Anycast addresses, tied to tun0 device, advertised using Quagga
DHCP and network auto-discovery

- Since we are planning to run a dual-stack network, there isn't a pressing need for IPv6 DHCP
- Hosts get (IPv4) DNS server addresses from IPv4 DHCP, or statically configured
- Network router auto-discovery has worked very well so far – have only rebooted routers once in last 1.5 years
- Haven't done IPv6 HSRP
- Beware of rogue IPv6 routers

Servers

- Many servers auto-configure IPv6 by default
- May need to tweak
 - /etc/hosts
 - /etc/hosts.allow
 - Ifcfg-eth0
 > Preference to use auto-discovery IPv6 address rather than fixed IPv6 address for outgoing connections
Web Servers

- A customised Apache 1.3 is used on our main Web serving farm
 - Too hard to add IPv6 support
- Apache 2.0 does support IPv6
 - Need to check .htaccess files
 > Permissions based on IPv4 addresses aren’t relevant any more

Web Reverse Proxy

- Use Apache in Reverse-proxy mode as IPv6 -> IPv4 gateway

Listen [2001:388:608c:88b::123]:80
<VirtualHost *:80>
 ProxyPreserveHost On
 ProxyPass / http://130.194.11.123:80/
 ProxyPassReverse / http://130.194.11.123:80/
</VirtualHost>
Problem: Monitoring IPv6 Network

- **Statseeker V3**
 - Can monitor interface usage and up/down status
 - Can’t ping IPv6 addresses
- **flow-tools**
 - Handles Cisco NetFlow V5 – IPv4 only
 - Need NetFlow V9 for IPv6
- **Fluke NetFlow Tracker 3.0.7**
 - Can accept NetFlow V9
 - Can show 6to4 IPv6 traffic
- **Snort 2.8**
 - IPv6 support is incomplete
 - Needs addresses like 2001:0:0:0:0:0:0/16
- **No IPv6 usage statistics collection !!!**

Problem: IPv6 Capability of Middle-boxes

- **CSM - Content Switch Module**
 - Load-balances and routes IPv4 only
 - Could add extra IPv6-only router interface to provide IPv6 service to real server Vlan
- **FWSM - Firewall Services Module**
 - L2 mode - Pass IPv6 without inspection
 - L3 mode - IPv6 inspected, but no Multicast
- **SSL Services Module**
 - IPv4 only
- **WISM - Wireless Services Module**
 - IP protocol independent !!!
- **SCE 2000 - Service Control Engine**
 - Pass IPv6 without inspection
- **VPN 3000 Concentrators**
 - VPN over IPv4 only, IPv4 inside (could do v6-in-v4 in VPN)
Lessons Learnt

- IPv4 not broken yet. Users see little need to migrate to IPv6, or dual-stack
- IPv4 address exhaustion like Y2K, or Global Warming, or Urban Sprawl, or …
 - But no definite deadline date
 - IPv4 will continue to work after exhaustion
 - “Will effect others, not us”
- Enabling IPv6 (over a relaxed timescale) has created opportunities for improving many IPv4 practices
 - Address plan
 - ACLs
 - Router configuration management
 - Network monitoring

To Do

- IPv6 for off-site DNS secondaries
 - University of Newcastle
 - Rackspace.com
- AAAA records in .edu.au parent zone
- IPv6 E-mail services
- IPv6 for South Africa and Malaysia campuses
- IPv6 usage statistics
- More
 - IPv6 servers
 - IPv6 user subnets
 - IPv6 education