
How Software Engineers can make their apps IPv6 Ready
26th June 2016 on Software Development, IPv6, Programming, IP by Christopher

Demicoli

Fortunately for Software Engineers, the introduction of IPv6 is going to be less of an

inconvenience than for Network Engineers. If you still need to understand the basics of

IPv6, before this read my other blog post: Beginner's Guide to IPv6

That being said, it is becoming increasingly important, especially on mobile devices, to

have your apps support IPv6. For example, on May 4th 2016, Apple declared that as of

June 1st, all apps submitted to the AppStore must support IPv6 only networking.

The reason for Apple (and other tech giants) enforcing this is now clearer than ever;

some mobile ISPs have simply run out of IPv4 space and are giving out only IPv6

addresses or Carrier Grade NATted IPv4.

Deployment Scenarios
An IPv6 ready app doesn't mean it has to work in IPv6 only networks. There are

going to be various transition mechanisms to help the transition to IPv6 go smoothly.

Your app needs to handle:

• Networks with only IPv4: Some networks still are IPv4 only and will remain so for a

long time. You need to make sure that your apps continue to work even in IPv4 only

networks.

• Networks with only IPv6: Some ISPs have already run out of IPv4 space. While some

have opted to give Carrier Grade NAT to their customers, some have simply opted to

deploy only IPv6. The only way for these customers to connect to IPv4 networks is
to pass through a 6to4 Tunnel which essentials uses IPv6 as a transport layer for

IPv4. The most obvious disadvantage is a degraded experience to your end users.

Your app (especially hosted ones) should accept IPv6 natively for the best experience

for these customers.

https://blog.cdemi.io/how-software-engineers-can-make-their-apps-ipv6-ready/
https://blog.cdemi.io/tag/software-development/
https://blog.cdemi.io/tag/ipv6/
https://blog.cdemi.io/tag/programming/
https://blog.cdemi.io/tag/ip/
https://twitter.com/chridemi
https://twitter.com/chridemi
https://blog.cdemi.io/beginners-guide-to-ipv6/
https://developer.apple.com/news/?id=05042016a

• Networks that Dual Stack: This is the best transition mechanism possible. In

networks that have still enough IPv4 space the ISPs will start to give out both IPv4 and

IPv6 connectivity at the same time. You need to understand how the application
behaves in a dual stack world. In that situation, there are two possible ways to
connect. A DNS name will resolve in at least two addresses. And you have multiple

local addresses to choose from when setting up a connection. As long as things work

fine, everyone will be happy. But if one of the networks has a problem, there will be long

timeouts unless you consider this situation from start. If you are interested in reading

more about this, search for Happy Eyeballs which can make dual-stack applications
more responsive to users, avoiding the usual problems faced by users with imperfect

IPv6 connections or setups.

IPv6 is going to start to appear in EMail Headers, SIP, DNS, etc... Your application

needs to be able to understand these addresses in URLs, header fields and data. And

you need to make sure that applications doesn’t crash when meeting these 128
bits or longer text strings for the first time.

Log Files, Databases, Regular Expressions and Operating Systems
For web servers, such as IIS, nginx, Apache, etc... you will start seeing IPv6 addresses

pop up in your log files, referrers, remote IPs etc... It is very common to find regular
expressions to match IPv4 strings; these will no longer work with IPv6. In fact, it is no
longer recommended to parse IPv6 addresses using Regex given that IPv6 address

can have very different formats. Ideally, you should use a library to do this job for you,
for example the IPAddress in .NET and and InetAddress in Java.

Is your database schema ready to accept IP addresses of 128 bits in length

instead of 32? Are you deploying your applications on Operating Systems that
support Dual Stacking?

Libraries

https://en.wikipedia.org/wiki/Happy_Eyeballs

Make sure that the libraries that you are using are also IPv6 Ready. For example, if you

are using a library to parse User Input to IP address, the library may not have been yet

updated. As Microsoft notes to their developers, IPv6 addresses are unlike IPv4
addresses in that their length is unpredictable. This has ramifications for nearly

every type of user interface. Where a fixed space was previously allocated in a user

interface for IPv4 addresses, that fixed space would necessarily not be sufficient for

IPv6.

URLs
URLs (which are a kind of URI) are often used by network applications. For example,

many mobile apps use URLs for RESTful communication to server-based applications,

and those server-based applications might use URLs to communicate with LDAP

services (for centralized authentication), databases, or other RESTful services.

As IPv6 addresses are textually expressed with colons (:) and the host and port are

separated by a colon, placement of IPv6 addresses in URLs requires that they be
escaped by square brackets ([and]). The following is the correct way to formulate
an HTTP URL with an IPv6 address: https://[2001:500:4:13::125]:443/

DNS
If an application needs to connect to some service by name, it will use a DNS name

resolver to translate that name into a list of destination addresses. It is worth mentioning

that the version of the IP protocol used to carry the DNS queries is independent
from the protocol version of the addresses included in the DNS data records.

Which means that you can connect through IPv4 to a DNS server in order to query
for information related to IPv6 and the other way around. Remember though: being
able to translate a name server into an IPv6 address doesn't mean that the
application running on that server supports IPv6.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740585
https://%5B2001:500:4:13::125%5D/

In IPv4, the DNS record used to translate a hostname into an IPv4 address is called an

A record. In IPv6, as IPv6 addresses are four times longer than IPv4 addresses, the

new record used to translate a hostname into an IPv6 address is called the AAAA
record (sometimes called a "quad A" record). A single hostname could have both
an A record and an AAAA record, therefore that hostname could be translated
into an IPv4 address and into an IPv6 address. Happy Eyeballs says that if you

receive both an A and an AAAA record, you should try contacting the host using both

addresses and measure the response time. Then you will establish a connection to that

host using the IP address that responded first.

IP Geolocation
It is quite common for server-based applications to tailor services based on the location

of the client, and one such method used is to locate the client geographically using the

client’s IP address (IP geolocation). In this case, changing of the address type from IPv4

to IPv6 may have some implications.

IP Geolocation works by taking the IP address of the system being geographically

located and looking it up in a database. How the database is created and how accurate

it is depends on the provider of the database. Depending on which IP geolocation

database is in use, IPv6 may not be supported.

For some IP geolocation systems, the API into the database has changed to support
IPv6, and for the feed-based systems, which enable customers to locally store the
data in a relational database such as MSSQL, there are likely schema changes
needing to be made.

Loopback and localhost
Some client applications send data or create connections specifically to other processes

on the same node using IP sockets. Some server applications have special processing

rules, such as authorization policies, that change if the software recognizes the

https://en.wikipedia.org/wiki/Happy_Eyeballs

connection is from another process on the same node. This communication happens
using an IP address known as the loopback address, usually referred to as localhost .

In IPv4, the loopback address can be any in the range between 127.0.0.0 and

127.255.255.255 , though 127.0.0.1 is almost always the address used. With IPv6
there is only one loopback address, ::1 . For clients, the most portable way to

address a local process is to resolve the localhost hostname instead of using an IP

address.

Testing
When you think you are finished, test, test and test.

If you have a Windows application that uses socket-level programming you can use
Microsoft's checkv4.exe Utility. The Checkv4.exe utility is designed to provide you

with a code porting partner; a utility that steps through your code base with you,

identifies potential problems or highlights code that could benefit from IPv6-capable

functions or structures, and makes recommendations.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740624(v=vs.85).aspx

	How Software Engineers can make their apps IPv6 Ready
	Deployment Scenarios
	Log Files, Databases, Regular Expressions and Operating Systems
	Libraries
	URLs
	DNS
	IP Geolocation
	Loopback and localhost
	Testing

