
tdistler.com
"To err is human, but to really foul th

 Home

 Projects
o Audio Resampling wi
o Image Quality Assess
o Video Quality Assessm

 About

Search Go

How to Test if an Address is IPv4 or

Cross-Platform IPv6 So
On February 28, 2011, in Code Mon

Writing code
challenging. Socket programming is
implementations of the latest IPv6 so
however, has only a partial implemen
sounds worse than it is, but it’s some

Note: This post assumes you are alre
3493).

Linux and Mac
Good news… they both fully support

Windows
Windows IPv6 support varies based o
IPv6 in Windows 2000, and they’ve

hings up you need a computer.”

ith FFMpeg
sment (IQA) Library
ment application (IQApp)

IPv6 xkcd: IPv6

ocket Programming
nkey, by Tom

e that works on Windows, Linux, and Mac is frequ
no exception. Modern versions of Linux and Mac

ocket API extensions defined in RFC 3493. Windo
ntation of the original (deprecated) version, RFC 2
ething you have to consider.

eady familiar with the socket extensions for IPv6 (

t RFC 3493.

on which version you’re targeting. Microsoft start
continued adding more of the socket extensions a

uently
c have full
ows,
2553. This

(RFC

ted adding
as time

went on. Most of the core functionality is present in XP, and what’s missing is easily replaced by
using Winsock calls directly (more on this later).

Windows gained IPv6 support while RFC 2553 was still the supported standard. Since then, it
has been deprecated by RFC 3493. However, Microsoft doesn’t want to break existing code
written against it’s API, so the older API lives on. The main impact of this is that sockaddr_in6
and sockaddr_storage are slightly different on Windows than Mac and Linux. The size of the
structures across platforms is the same (the sa_family_t member was shortened), it’s just that
the Windows structures don’t begin with the length member. For example:

// Linux and Mac
struct sockaddr_in6 {
 uint8_t sin6_len; /* Added in RFC 3493 */
 sa_family_t sin6_family;
 ...
};
struct sockaddr_storage {
 uint8_t ss_len; /* Added in RFC 3493 */
 sa_family_t ss_family;
 ...
};

// Windows
struct sockaddr_in6 {
 sa_family_t sin6_family;
 ...
};
struct sockaddr_storage {
 sa_family_t ss_family;
 ...
};

I’ve never had a problem with this, because the size of sockaddr_in6 is easily determined
(sizeof(sockaddr_in6)) and I always end up casting sockaddr_storage to the specific type
(sockaddr_in or sockaddr_in6) based on ss_family.

Besides the data structure differences, it’s important to remember that Microsoft added IPv6
support over multiple versions. Support first appeared in Windows 2000, but more of the
extensions have been added over time. Most of the core functionality was present in XP
(including multicast), but not everything is implemented as of Windows 7. It’s annoying, but I
will say that what’s missing is easily replaced by using Winsock calls directly.

Here’s the breakdown of IPv6 socket extensions by Windows version:

Socket Extension 2K XP Vista 7 Comments
if_indextoname() x x GetAdaptersAddresses() for XP

if_nametoindex() x x GetAdaptersAddresses() for XP

if_nameindex() GetAdaptersAddresses() (XP, later)

if_freenameindex()

getaddrinfo() x x x x

getnameinfo() x x x x

freeaddrinfo() x x x x

gai_strerror() x x x x

inet_pton() x x WSAStringToAddress() (2000, XP)

inet_ntop() x x WSAAddressToString() (2000, XP)

All IN6_IS_ADDR_* macros x x x Ex: IN6_IS_ADDR_LOOPBACK()

struct sockaddr_storage x x x

Multicast support x x x

As you can see, you may still have to call Winsock directly depending on what version of
Windows you are targeting. In my opinion, programming IPv6 on Windows is a lot easier if you
only support XP and later, but I know that’s not always possible.

Summary

Modern operating systems all support IPv6. However, for business reasons, Windows has a
slightly older version of the socket API which requires special consideration. My goal was to
enumerate those differences to help make the transition to IPv6 smoother. Writing cross-platform
code can be a fun challenge at times, but it’s also a little tedious. Hopefully, this post helps ease
the pain.

