
https://medium.com/@chrisrust/how-application-defined-infrastructure-adi-will-disrupt-the-cloud-in-2018-cf28f989ffba

How Application-Defined
Infrastructure (ADI) Will
Disrupt the Cloud In 2018

Chris Rust
Follow
Jan 4, 2018 · 19 min read

INTRODUCTION

https://medium.com/@chrisrust?source=post_page-----cf28f989ffba----------------------
https://medium.com/@chrisrust/how-application-defined-infrastructure-adi-will-disrupt-the-cloud-in-2018-cf28f989ffba?source=post_page-----cf28f989ffba----------------------
https://medium.com/@chrisrust?source=post_page-----cf28f989ffba----------------------

The world is in a golden age of information technology (IT)
innovation. The mega-forces of cloud, mobile, big data analytics
powered by machine learning, IoT, and massively scalable apps
are re-shaping all aspects of business and society. At the center of
this IT renaissance is an unprecedented global data center (DC)
buildout in public, private, and hybrid cloud computing.
According to Synergy Research Group, the number of hyperscale
DCs around the globe grew from 300 at YE16 to 390 at YE17, with
another 69 hyperscale DCs that are in various stages of planning
or building.

In this paper, we briefly review the three major waves of DC
infrastructure innovation to date. We then introduce the fourth
wave of IT infrastructure: Application-Defined Infrastructure
(ADI), and the technology forces and operational challenges
driving its adoption by large enterprises.

A BRIEF HISTORY OF DC
INFRASTRUCTURE
A DC is a purpose-built structure used to house computer systems
and associated components, such as networking equipment,
storage systems, and telecommunications equipment. It is the
brains of the knowledge economy and to our connected world.
The modern DC has its’ roots in the main-frame room of the
1960s, the telecommunications central office, and the enterprise

https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/w/index.php?search=Central+office&title=Special:Search&profile=default&fulltext=1&searchToken=7oshr5rv9jdvx9xfitncb7uk5

IT wiring closet. The past two decades have seen an explosion of
creativity perfecting the art of the modern DC.

1997–2007, First Wave — Bare Metal Servers

Bare metal servers are single-tenant physical servers. Their
strengths are high application (app) performance and
predictability. Their weaknesses are high cost, medium
complexity to provision apps, and low flexibility once apps are
deployed. They continue as a solution of choice for specific
performance sensitive workloads that merit dedicated
infrastructure (i.e., databases). Bare metal is still often used for
dedicated computer clusters that are built to support specific
scale-out distributed computing apps (e.g., a Hadoop cluster). The
requirements for greater flexibility and improved economics have
made this approach limiting given the continually evolving app
landscape.

2005-Present, Second Wave — Virtualization with
Hypervisors

Virtualization is an emulation of a computer system that enables
one physical computer to run one or more virtual machines
(VMs)(see Figure 1).

https://en.wikipedia.org/wiki/Bare-metal_server
https://en.wikipedia.org/wiki/Computer_cluster

Figure 1: Making one computer look like many with hypervisor-based virtualization

While this concept goes back to the 1960s and the era of
mainframe computers, it was brought to the forefront of IT
efficiency gains by VMware in 1998 with their commercialization
of the modern hypervisor. Before VMware, a significant amount of
expensive computer resources were underutilized. The VMware
hypervisor helped solve the need for greater IT efficiency by
making one computer look like multiple computers, each one with
their guest operating system. Released in 1999, the VMWare
hypervisor was novel because it enabled virtualization on Intel
x86 for the first time by using binary translation to replace
privileged instructions to trap into the hypervisor. As of
November 2017, VMware had grown into a highly profitable $53B
market cap company with $1.98B of 3Q17 revenue and $443M of
3Q17 net income. With hundreds of thousands of businesses
around the world running important portions of their operations

https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Hypervisor

on VMware’s virtualized systems, VMware is the market share
leader in hypervisor-based virtualization solution for enterprise
private clouds. Other hypervisors include Microsoft Hyper-V,
Linux KVM, and Xen.

The strengths of virtualization with hypervisors include:
technology maturity; broad adoption; improved computer
utilization by enabling multiple VMs; infrastructure software to
build and operate clouds based on VMs; strong multi-tenancy
support.

The weaknesses of virtualization with hypervisors include: high
complexity; hypervisor resource overhead; client operating
system resource overhead for each guest VM; non-negligible
application performance hit when compared to bare metal
infrastructure; the “noisy neighbor effect” when one user impacts
the performance and stability of other users within the same
physical server; the “IO blender effect” when multiple VMs send
their IO requests at the same time and degrade storage
performance; extremely high hypervisor energy consumption
overhead depending on workload; and the time required to
instantiate new VMs (each of which requires a full client OS).

The hypervisor vendors and cloud operators who have built their
platforms on the hypervisor paradigm are working to address
some of these weaknesses with techniques that include: hardware
virtualization (e.g., Amazon Nitro Project); lightweight

https://en.wikipedia.org/wiki/Cloud_computing_issues
http://searchstorage.techtarget.com/definition/I-O-blender-effect
https://en.wikipedia.org/wiki/Hardware_virtualization
https://en.wikipedia.org/wiki/Hardware_virtualization

hypervisors; unikernels that package the OS and application into
one bundle and eliminates the traditional partition between OS
kernel and user space; and various approaches to serverless
computing.

2010-Present, Third Wave — Hyper-Converged
Infrastructure (HCI) (also based on hypervisors)

A Hyper-Converged Infrastructure (HCI) is a wholly software-
defined IT infrastructure that virtualizes all of the elements of
conventional “hardware-defined” systems (see Figure 2). HCI
includes, at a minimum, virtualized computing (a hypervisor), a
virtualized software-defined storage (SAN) and virtualized
networking (Software-defined networking).

Figure 2: Hyper-converged infrastructure (Source: Nutanix Definitive Guide for HCI)

https://en.wikipedia.org/wiki/Unikernel
https://en.wikipedia.org/wiki/Serverless_computing
https://en.wikipedia.org/wiki/Serverless_computing
https://en.wikipedia.org/wiki/Hyper-converged_infrastructure
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Computer_network

Simply stated, HCI integrates compute, storage, and network
connectivity into a “cloud-in-a-box,” then provides a unified
management view of both hardware and software assets to hide
the complexity of the cloud. HCI uses sophisticated infrastructure
software on top of bare metal commodity parts to simplify
management and increase ease-of-use for end users in certain
high-value apps (e.g., virtual desktop). HCI vendors include
Dell/EMC, IBM, Lenovo, HP, Nutanix, Stratoscale, and Cisco.

The strengths of HCI include: ease of use by pre-packaging
hardware and software together and hiding the underlying
complexity of virtualization with the hypervisor, graceful scaling
of infrastructure by growing clusters of HCI appliances and,
simplification of the do-it-yourself approach to building a private
cloud. HCI offers a strong solution for high-value applications
such as desktop virtualization.

The weaknesses of HCI include: the ratios between compute and
storage are locked in at the time these system resources are
packaged together into an appliance; lack of support for some
important classes of stateful apps (e.g. relational databases);
limited support for massively scalable modern data stack
distributed computing apps like Hadoop, MongoDB, Cassandra,
and Spark; HCI vendor lock-in; and little to no deployments in
larger clouds.

THE 4TH WAVE OF IT
INFRASTRUCTURE
In the first three waves of IT transformation every IT project
started with planning out the underlying Infrastructure first. For
example, to deploy a database, planning first started with
procuring and configuring severs or VMs, networks and storage.
The chosen infrastructure components had to be planned to
ensure they meet the application’s current SLAs and anticipated
growth. Only after all this infrastructure was planned and
configured were apps brought online. But infrastructure exists to
serve apps, not the other way around. Wouldn’t it be better to
start an IT project at the application — by describing just its needs
and letting the infrastructure self-assemble and configure itself to
meet those needs (current and anticipated)?

We are entering the 4th wave of IT infrastructure innovation
where apps will define the infrastructure that serves them. In this
4th wave both apps and people are liberated from the shackles of
the specifics of the underlying IT infrastructure. The underlying
infrastructure itself might change, from bare metal to VMs to
private or public cloud, but the interaction with an application
remains unchanged. This 4th wave is an era of Application
Defined Infrastructure (ADI), where infrastructure becomes
increasingly invisible, and simplicity is once again the ultimate
sophistication. The drivers for this 4th wave of IT infrastructure

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Service-level_agreement

are given below, starting with a discussion of a significant secular
trend — containers.

Containers

Containers is a technology that packages an application and its
dependencies in a manner that allows it to be reliably moved from
one computing environment to another (see Figure 3).

Figure 3: Containers vs. Virtualization with Hypervisor (Source: Docker)

Unlike VMs, which package an entire operating system along with
the application, multiple containers running on a machine share
the operating system. Each application running inside its own
container continues to enjoy an isolation boundary that makes it
appear like it is the only one running on that machine.

Containers became widely popular with Docker’s introduction of
application containers in 2013. Docker is playing a leadership role
in popularizing the concept of containers by making application
packaging in the form of Docker images an industry standard.

Containers, specifically Docker, significantly simplify how apps
are configured. They strike the right balance between merging or,
(where applicable) separating configuration from the application
payload (the container image). Containers operate at close to zero
overhead because containers do not virtualize in the hypervisor
sense of the word. Instead they isolate apps (or portions of apps)
from one another in secure partitions that run in a shared user
space over one host operating system. This means apps run at
bare metal speeds without consuming any additional resources.

However, containers by themselves are not sufficient as an IT
infrastructure management paradigm because they are not
“infrastructure aware.” Organizations are discovering that existing
data center infrastructure is not capable of dealing with large
numbers of containerized apps since a single modern
microservices-based web application can easily span hundreds or
more containers. Organizations run many apps and often find
their systems administration teams overwhelmed attempting to
match resources with containers.

Containers improve server utilization by allowing multiple apps to
run on the same server. But since all apps share the same storage,

https://en.wikipedia.org/wiki/Microservices

storage performance can be erratic, which impacts overall
application performance. To combat this, some organizations
deploy critical apps on siloed infrastructure to ensure good
performance, which leads to overprovisioned hardware and poor
resource utilization. Cloud computing is evolving to address this.
Cloud service providers have long offered Infrastructure-as-a-
Service (IaaS) and Platform-as-a-Service (PaaS). The first wave of
Containers-as-a-Service (CaaS) on bare metal is beginning to be
developed by the largest Cloud service providers. The concept of
“application state” is important to understand when discussing a
CaaS offering.

Stateless and Stateful Apps

Understanding the concept of “app state” helps to understand the
evolving requirements of the IT infrastructure that serves apps.
App state is the data that application components need to perform
their intended function. Apps may require configuration
information, user credentials, user profile information, user
history, clickstream data. Data associated with apps can be stored
in many different physical locations: local server cache; in a file
system; in a database table; or in a storage resource. There are
many elements that contribute to a full understanding of app
state: app persistence requirements (i.e. uptime, re-start
requirement, data loss windows); configuration state; session
state; infrastructure state (e.g. networking addresses, cluster
state).

https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29
https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29
https://en.wikipedia.org/wiki/Platform_as_a_service

Stateless apps do not save client data generated in one session for
use in the next session with that client. Each session is carried out
as if it was the first time and responses are not dependent upon
data from a previous session. Protocols like HTTP are stateless
because the web server does not remember any state across page
requests that is processes.

In contrast, Stateful apps store data from previous sessions,
limiting the data that needs to be stored on the client end and
retaining information on the server from one use to the next.
Applications that needs to perform real-time work typically
maintains some state locality to get very fast response times.
Examples include content delivery networks, streaming media
servers, identity management and authentication servers, and
core transaction systems for payment processing. Many of the
most important mission-critical applications often need to
preserve and manage state. Complex, distributed Big Data,
NoSQL and Database apps are stateful and need to run both on
premises and in the cloud. Simply attaching a storage volume to
Docker is not sufficient to support stateful apps because that
doesn’t address performance predictability, app portability and
high availability, lifecycle management etc. Thus, there is a
pressing need for cloud computing infrastructure to do a much
better job of supporting mission-critical stateful apps.

Container Orchestration

Putting applications into containers becomes interesting only
when those containers can be efficiently deployed, managed, and
scaled efficiently. Container orchestration engines perform the
important function of managing clusters of containers, and is an
important building block of the 4th wave of IT infrastructure —
important enough to inspire a “container orchestration war.”
Sample players include — Docker’s Swarm, Redhat’s OpenShift,
Rancher’s Cattle, Mesosphere’s Marathon, AWS’ ECS, CoreOS’
Fleet. Container orchestration is strategic, but it is a component of
a broader infrastructure management solution. The focus of these
container orchestration engines is mainly on stateless cloud-
native apps. However, there are efforts such as Kubernetes
StatefulSet that hope to improve the ability to support open
source databases like MySQL and PostgreSQL in containerized
environments, but full infrastructure control is required to meet
the service level agreements and quality-of-service and high
availability requirements of demanding stateful apps.

THE 4TH WAVE — APPLICATION-
DEFINED INFRASTRUCTURE (ADI)

ADI Requirements Summary

With the rise of containers, and the need to gracefully run both
stateless and stateful applications on a shared multi-tenant
infrastructure, the Application-Defined Infrastructure (ADI) is
now required.

The ADI can be described as a container-based, application-aware
computes and storage platform. The software efficiently abstracts
underlying server, VM, network, and storage boundaries to
produce a compute, storage, and data continuum. Many different
containerized apps can run in this continuum without impacting
one another’s performance.

Application portability and scalability are increased because
compute and storage are decoupled; apps can be freely moved
around the continuum without moving or copying data. Complex
distributed apps like NoSQL, Hadoop, Cassandra, and Mongo can
be deployed quickly and easily.

The ADI enables the intelligent provisioning of containers and
storage based on individual application requirements as well as
the topology of the environment, and it configures the application
to make the best use of those components. The ADI ensures that
all apps get sufficient compute, storage, and network resources to
meet user-defined quality of service requirements; the result is
predictable performance for all apps.

The ADI should provide the ability to automatically recover failed
nodes and disks, and seamlessly move workloads between servers.
As a result, hardware can be used more efficiently, and less
hardware is required in reserve for inevitable performance spikes.

	https://medium.com/@chrisrust/how-application-defined-infrastructure-adi-will-disrupt-the-cloud-in-2018-cf28f989ffba
	How Application-Defined Infrastructure (ADI) Will Disrupt the Cloud In 2018
	INTRODUCTION
	A BRIEF HISTORY OF DC INFRASTRUCTURE
	1997–2007, First Wave — Bare Metal Servers
	2005-Present, Second Wave — Virtualization with Hypervisors
	2010-Present, Third Wave — Hyper-Converged Infrastructure (HCI) (also based on hypervisors)

	THE 4TH WAVE OF IT INFRASTRUCTURE
	Containers
	Stateless and Stateful Apps
	Container Orchestration

	THE 4TH WAVE — APPLICATION-DEFINED INFRASTRUCTURE (ADI)
	ADI Requirements Summary

